Performance Optimisation of ZnO Nanorods Based Energy Harvesters

Nimra Jalali¹, Joe Briscoe¹, Peter Woolliams², Mark Stewart², Paul M. Weaver², Markys Cain² and Steve Dunn¹

¹Queen Mary University of London, ²National Physical Laboratory

Device	Open Circuit Voltage	Load Resistance	Power Density	Power/ cm ³	Energy Density	Charge Displaced
	mV	kΩ	µW/cm ²	mW/cm ³	nJ/cm ²	nC/cm ²
ZnO/ PEDOT:PSS	130	1.63	28.88	115.52	19.30	505.91
ZnO/ PMMA	200	245	0.26	1.28	0.72	8.08

Device Features

Table 2. Performance parameters of CuSCN-passivated ZnO devices.

Device	Open Circuit Voltage	Short Circuit Current	Load Resistance	Power Density	Power/ cm ³	Energy Density	Charge Displaced
	mV	mA/cm ²	kΩ	µW/cm ²	W/cm ³	nJ/cm ²	nC/cm ²
ZnO (As Grown)	219	0.71	1.39	41.07	0.16	22.20	236.27
CuSCN (10 coats)	897	1.30	5.15	318.71	1.28	175.53	647.38
CuSCN (20 coats)	1000	1.88	6.21	434.33	1.73	255.68	848.11

Figure 3. Impedance Analysis of CuSCN-passivated ZnO energy harvesters indicating the circuit RC time constants.

Future Works

References

Briscoe J, Jalali N, Woolliams P, Stewart [1] M, Weaver P M, Cain M and Dunn S 2013 techniques for piezoelectric Measurement nanogenerators Energy Environ. Sci. 6 3035

School of Engineering and Materials Science

Surface passivation techniques are applied to enhance ZnO energy harvester performance.

Conclusion

- The impedance analysis is used as a tool to obtain relationship between device RC time constant and screening effect.
- Reduce the n-type conductivity of ZnO
- Reduce the device series resistance by
- - replacing ITO with metal electrode.

Table 3. Performance parameters of Polyelectrolyte-passivated ZnO devices.

Device	Open Circuit Voltage	Short Circuit Current	Load Resistance	Power Density	Power/ cm ³	Energy Density	Charge Displaced
	mV	mA/cm ²	kΩ	µW/cm ²	W/cm ³	nJ/cm ²	nC/cm ²
ZnO As Grown)	121	1.25	0.95	44.74	0.17	9.89	288.97
PDDA and PSS 2 Bi layers)	480	0.66	7.48	216	0.86	65.41	438.98
PDDA and PSS 4 Bi Layers)	1000	1.47	10.86	426	1.70	178.02	587.13