## Flying with Liquids: Aircraft Thermoelectric Energy Harvesting using Phase Change Materials

### **Tzern Toh**

Energy Harvesting Network, 12 March 2014, Hamilton House, London

# **Flying with Liquids**



## **Tzern Toh**

Energy Harvesting Network, 12 March 2014, Hamilton House, London

#### **Target Application**

- Wireless strain gauge for an aircraft flight test
- 28.5 J per flight is required
- Peak power consumption: 100 mW at 3.3 V
- Dimensions: 9 x 6 x 5 cm



### **Aircraft Energy Harvesting**

- Motivation:
  - Reduce internal wiring
  - Recharge batteries of wireless sensor nodes
- Available power sources in an aircraft:
  - Vibration
  - Solar
  - Radio frequency radiation
  - Thermal

#### **Thermoelectric Generators (TEG)**

- Conventional approach:
  - · In direct contact with a hot and a cold surface



· Heat availability is unlimited

#### **Thermoelectric Generators (TEG)**



• Electrical output power:  $P_{out} = \eta_{teg} \cdot Q$ 

#### **New Approach: Aircraft Application**

Exterior temperature: +20°C to -25°C and back

Cabin wall

Can we store the thermal energy and delay ∆T changing sign?



#### New Approach: Phase Change Material (PCM)

Phase change material:

| Characteristic                | Water | Radiator oil |
|-------------------------------|-------|--------------|
| Heat capacity [kJ/kg/°C]      | 4.2   | ~2           |
| Latent heat (melting) [kJ/kg] | 334   | ~100         |
| Melting temperature           | 0°C   | < 0°C        |

Heat storage unit (HSU)

#### **Device Characteristics**

- PCM: 23 ml water
- Marlow TEGs: TG12-2.5, ZT = 0.72,  $R_{teg} = 5 \Omega$



#### **Harvester Interface Electronics**



#### **New Rectifier Topology**

- Polarity of V<sub>teg</sub> is known beforehand
- Depletion:
  - $V_{gs(th)} = -1.4 \text{ V}, R_{ds(on)} = 1.7 \Omega$
- Enhancement:
  - $V_{gs(th)} = 1.6 \text{ V}, R_{ds(on)} = 3.7 \text{ m}\Omega$



#### **Duty Cycling the Voltage Inverter**

- Use reservoir capacitor to maintain the negative gate voltage
- Negative gate voltage is kept between -4 V and -2.5 V



#### Prototype



#### **Experimental Results**

 Instantaneous power at the TEG output, rectifier output and battery input



#### **Experimental Results**

- Cumulative energy: TEG output, rectifier output, battery input
- Thermal energy =  $2^*(c \cdot \Delta T + L) \approx 21 \text{ kJ}$



#### **Experimental Results**

Instantaneous efficiency of the interface electronics



#### Conclusions

- Heat storage thermoelectric energy harvesting is a promising energy solution for aircraft wireless sensor nodes
- Rectifier topology does not require bias voltages to start and potentially less R<sub>ds(on)</sub> losses in the depletion devices
- TEG generated 126 J and 81 J delivered to battery: ~3x the 28.5 J required by the sensor node
- Overall TEG-to-battery efficiency of 64.3%

#### **Acknowledgements**

- Imperial College London, UK:
  - Steve Wright, Michail Kiziroglou, Paul Mitcheson and Eric Yeatman
- Centre Suisse d'Electronique et Microtechnique, Neuchâtel, Switzerland:
  - Damien Piguet, Laurent von Allmen and Jean-Dominique Decotignie
- Serma Ingeniere, Toulouse, France:
  - Christophe Leroux and Georges Bailleul
- Airbus, Hamburg, Germany:
  - Alexander Weisser and Jan Müller
- Clean Sky Joint Technology Initiative: JTI-CS-2010-1-SFWA-01-016

## Thank you

Tzern Toh

Imperial College London

tzern.toh@imperial.ac.uk



23 ml PCM → 126 J

