

Modelling and Optimisation of Broadband Energy Harvesters Using Bistable Composites

David N. Betts, Christopher R. Bowen, H. Alicia Kim Department of Mechanical Engineering, University of Bath, UK

> **Paul Weaver** National Physical Laboratory, Teddington, UK

> > Dan Inman

Department of Aerospace Engineering, University of Michigan, MI, USA

Broadband Energy Harvesters

- ~10-30mW power required for low power electronics (e.g. structural health monitoring)
- Most are tuned to vibrate at resonant frequencies \rightarrow unsuitable for broadband ambient vibration
- Bistable systems have broadband energy harvesting characteristics due to nonlinearity (e.g. cantilever beam in a magnetic field)
- Bistable piezo-composites able to harvest energy from a wide range of frequencies
- EPSRC Project with Perpetuum, NPL

Arrieta, Inman APL 2010

To model and design vibration broadband energy harvesters using bistable composites.

- Introduction of bistable composites
- Modelling and investigation of dynamics of piezobistable composites
- Arbitary shape bistables with tailored mass distribution

Bistable Composites – Asymmetric lay-up

Piezo-bistable composites based on statics.

Existing modelling approach is based on minimization of total strain energy, ${\it W}$

out-of-plane displacement =
$$\frac{1}{2}(ax^2 + by^2 + cxy)$$

 ${\it W}\,$ is the integral of strain energy density over the laminate volume,

a function of: out-of-plane (*a*-*c*), and in-plane shape coefficients (d_{1-11}), stiffness, thermal forces and moments,

laminate geometry

$$f_i = \frac{\partial W}{\partial e_i} = 0; \quad i = 1...14$$

where the e_i 's are the coefficients a, b, c, d_{1-11} .

Dano, Hyer, Int J Sol Struc 1998

[-30/60/0_{MFC}] laminate

- Laminate specific parameters
- Resign seepage
- Imperfections
- Limitation of the parabolic shape function
- Effects of MFC local stiffening

Modelling and investigation of dynamics

Dynamics Model

Analytical expression for nonlinear stiffness

Electro-mechanical coupling

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{D}\dot{\mathbf{x}} + \mathbf{K}(\mathbf{x}) + \theta \mathbf{V} = \mathbf{F}(t)$$
$$C_{p}\dot{\mathbf{V}} + \frac{\mathbf{V}}{R_{l}} + \theta\dot{\mathbf{x}} = 0$$

Betts, Kim, Bowen, Guyer, Le Bas, Inman, AIAA SciTech 2012

Stiffness, K

Mass and Damping

• Mass

 $\mathbf{M} = \mathbf{M}_{\text{lam}} + \mathbf{M}_{\text{mfc}}$

 Determined from work done by inertial forces Rayleigh proportional damping

 $\mathbf{D} = \alpha \mathbf{M} \dot{\mathbf{x}} + \beta \mathbf{K}(\mathbf{x})$

 α , determined experimentally by measuring the decay response of oscillations at the resonant frequency using a laser vibrometer.

 β , assumed negligible as the mass term dominates for the relevant frequency range

Department of Mechanical Engineering

 $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{D}\dot{\mathbf{x}} + \mathbf{K}(\mathbf{x}) + \mathbf{\partial}\mathbf{V} = \mathbf{F}(t)$

 $C_p \dot{\mathbf{V}} +$

Electrical and Coupling Terms

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{D}\dot{\mathbf{x}} + \mathbf{K}(\mathbf{x}) + \theta \mathbf{V} = \mathbf{F}(t)$$
$$C_{p}\dot{\mathbf{V}} + \frac{\mathbf{V}}{R_{l}} + \theta \dot{\mathbf{x}} = 0$$

- C_p Capacitance of the piezoelectric element (670nF) Measured experimentally
- R_l Load resistance attached across the piezoelectric element (10k Ω) Remains fixed throughout this work The optimal value of R_l to maximise power output is frequency dependent. The value used here is not varied as the frequency changes, but is chosen to fit well within the frequency range considered
- θ Piezoelectric electromechanical coupling coefficient (0.48)
 Manufacturer's value

Experimental Set-Up

- 200 x 200 x 0.5mm laminate (HTA/913)
- $[0/90]_{T}$ stacking sequence
- 85 x 85 x 0.3mm MFC (P2-type)
- 10kΩ load resistance
- Centrally mounted to a electrodynamic shaker

System to reach a steady state – 30 seconds Data recorded for the subsequent 6 seconds **Input:** frequency and acceleration (g-level) **Output: Displacement** and **Velocity** (laser vibrometer) and **Voltage** (oscilloscope)

Characterisation of Dynamics Modes

Mode Type		Example Waveform
Single well	Resonance	
oscillations	Subharmonic	~~~~~
	Off-resonance	/ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Intermittency	Periodic	MMMM
	Chaotic	MMM
Continuous snap-through		

Investigation of Dynamics Modes [Experimental]

- + stable states
- start position of each time period
- Off-resonance single well not plotted (too small).
- A 7-cycle pattern is evident in the periodic solution
- Intermittent behaviour shows some higher peak velocities.
- Continuous snapthrough shows high velocities (hence power) at every cycle.

What conditions needed for continuous snap-through?

FFT plots of corner velocity generated for slow frequency sweeps (0.1Hz/s) at three different amplitudes.

Snap-through is dependent on a combination of **drive frequency** and **amplitude**.

Mode Dependency on Vibration Characteristics

- Intermittency modes change repeatedly between periodic and chaotic.
- Broadband snap-through with increasing g-level.

Power Output [Experimental & Modelling]

Single well oscillations 148mW (139mW)
 Periodic intermittency 149mW (151mW)
 Chaotic intermittency 160mW (180mW)
 Continuous snap-through 244mW (279mW)

Experimental Modelling

- Reasonably good at modelling the modal boundaries
- Correlation in power is good for small amplitude oscillations
- Significant discrepancies in power in the intermittent region.
- Highest power output in continuous snap-through at 54Hz (both modelling and experiments).

Average Power Outputs

- Snap-through first occurs at 5g.
- Peak power does not significantly increase for beyond 5g.
- Half-power bandwidth (frequency band over which half the peak power is observed) continues to increase (7Hz at 3g vs 22Hz 10g).
- Modelling consistently over-predicts power by ~15%.

Arbitary shape

Generalise the existing modelling above to consider arbitrary planforms

Assume that static shapes of arbitrary geometry bistable laminates are still be approximated by the out-of-plane displacement profile

out-of-plane displacement = $\frac{1}{2}(ax^2 + by^2 + cxy)$

Arbitary shape

Discretisation of an example bistable laminate planform.

Arbitary static shape

Out-of-plane displacement of both stable shapes of the ×20 laminate. Red nearest the camera, purple furthest away.

Model and experiment comparison

Difference between experimental and predicted shapes of ×20 laminate in mm and b) as a percentage of the measured value.

Limitations of model

Out-of-plane displacement of the ×40 laminate in two additional stable configurations (a) top left and bottom left sections are snapped forward and (b) top left and bottom right sections are snapped forward.

Addition of piezoelectrics (experimental with NPL)

Experimental power outputs for a single MFC (one of four) attached to ×30 laminate at (a) 3g peak acceleration and (b) 9g peak acceleration in the range 26-50Hz and 1kW-1MW.

Addition of piezoelectrics (experimental and model)

Experimental and modelling power outputs for a single MFC (one of four) attached to the surface of the ×30 laminate at (a) 3g peak acceleration and (b) 9g peak acceleration in the range 26-50Hz with resistance load of 124kW.

Conclusions

- Analytical, FE and experimental investigation of bistable piezocomposites.
- Developed a dynamics model for base-excited bistable composite energy harvesters.
- Complex nonlinear dynamics modes identified.
- The model is reasonably good for predicting the modal boundaries and peak power.
- Highest power outputs in continuous snap-through modes 244mW at 10g acceleration for a 200x200mm laminate with 85x85mm piezoelectric.
- Arbitary shape model good agreement with static shape (5-8%) and power level
- Tool for optimisation of bistable laminates for energy harvesting

Novel Energy Materials: Engineering Science and Integrated Systems (NEMESIS)

ERC Grant Agreement no. 320963 Prof. Chris Bowen

Updates can be followed via Twitter feeds **@BowenNEMESIS** c.r.bowen@bath.ac.uk

European Research Council