

Plastic Photovoltaic Technology for Energy Harvesting Applications

Energy Harvesting 2014

Chris Rider 12th March 2014

It all starts at the end of a journey of Eight minutes and 19 seconds...

© 2014 Eight19 Limited

Eight¹⁹

- Jan 2009 Incubation Phase in Cambridge University
- Sep 2010 Company Foundation
- 2011 Development of Pay-As-You-Go Solar business model
- Aug 2012 Formation of Azuri

Eight19 Vision

- Leading supplier of flexible organic photovoltaics, "plastic solar"
- Development of the lowest cost manufacturing process
 - Significant emphasis on solution process
 - Focus on module architectures that facilitate low-cost & distributed manufacturing
 - Working with a wide variety of suppliers

Eight19's Plastic Solar Attributes

Physical

Flexible, Light-weight, Thin, Robust

Aesthetic

Colours, Semitransparency

Excellent low-light performance

Environment

Low embedded energy, rapid energy payback

Physical

Flexible, Light-weight, Thin, Robust

Aesthetic

Colours, Semi-transparency

Excellent low-light performance

Environment

Low embedded energy

- Broad deployment options
- Low cost of deployment
- Storage options e.g. roll-up
- Reduced shipping costs

Physical

Flexible, Light-weight, Thin, Robust

Aesthetic

Colours, Semi-transparency

Excellent low-light performance

Environment

Low embedded energy

Excellent Value

Design flexibility

- Applications requiring transparency – e.g. windows
- IR sensitivity

Physical	
Flexible, Light-weight, Thin, Robust	
Aesthetic	
Colours, Semi-transparency	
Excellent low-light performance	 Indoor applications
Environment	
Environment Low embedded energy	
Environment Low embedded energy Excellent Value	

Physical

Flexible, Light-weight, Thin, Robust

Aesthetic

Colours, Semi-transparency

Excellent low-light performance

Environment

Low embedded energy

- Can be part of large-scale approaches to reduce CO₂ emissions
- Good environmental credentials when used on products

Physical

Flexible, Light-weight, Thin, Robust

Aesthetic

Colours, Semi-transparency

Excellent low-light performance

Environment

Low embedded energy

- Can reach price points to enable very high-volume product applications
- In volume can compete on \$/Wp with silicon PV

Near-term Opportunities for Value Creation

Power for wireless electronics

- Primary battery elimination
- Reduced installation costs
- Labour savings on battery changes
- End-of-life issues with battery disposal
- Design flexibility
 - Deployment on casing
 - Tunable colour
 - IR harvesting visibly opaque
 - Semi-transparency

Energy Harvesting Applications

- Power for electronics on product packaging
- Wireless electronics/sensors/Internet of Things
- Wireless signage
- Portable power for charging mobile devices/lighting

Illumination Spectra

Tuning Photovoltaic Absorption

Measuring Illuminance

- Indoors, artificial lighting is for human vision "illuminance"
- Not measured in watts but lumens
- 1 lux is 1 lumen/m²

1 lux	1m from a single candle
3.4 lux	colour vision fully operational
100 lux	hallway
320-500 lux	office lighting, retail environment
1,000 lux	overcast daylight
10,000 lux	full daylight (indirect sun)
100,000 lux	direct sunlight

Illuminance versus distance

Inverse Square Law for a point source....

200 lux at 3m from a point light source 800 lux at 1.5m from same light source

Move harvester as close to light source as possible...

Wireless Signage - Example

200 lux produces 10*µW/cm² with Eight19 plastic photovoltaics

100cm² can generate 1mW at 200 lux

Illustrative example If....

Writing the display consumes per event Reading data from wireless consumes per event Background power consumption of electronics is

Available energy generated is Reading every 30s consumes Background power consumed Power remaining is 60mJ/minute 20mJ/minute 6mJ/minute **34mJ/minute**

Display can be updated once every ~3minutes

* Champion cell data

100mJ

100µW

at 200lux

SALE

49.99

KitchenAid

10mJ

InnobellaBlack Vinyl Chai

Design Flexibility

- Voltage, current & number of stripes
- Length and width

Manufacturing & Commercial Development

- Developing custom designs for leading end-users
- Market trials this year
- Small-scale production in 2015
- Production ramp-up
- Continued improvements in lifetime and efficiency

Talk to us about your application

For more information please contact

Chris Rider VP Business Development

chris.rider@eight19.com