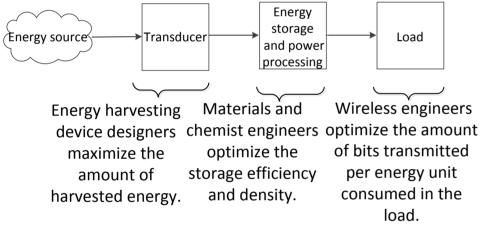
Optimization of Energy Harvesting Wirel Pol Blasco and Deniz Gündüz Electrical Engineering Department, Imperial Col		Imperial College London
March 2013 Energy Ha	arvesting 2013	London, UK
Summary We design novel communication protocols for wireless sensor networks with energy harvesting nodes. Our main contribution is a machine-learning based communication protocol for an energy-harvesting sensor node that optimizes the total amount of transmitted data without any prior knowledge regarding the energy harvesting process.		
Wireless Sensor Networks (WSNs) A WSN consists of spatially deployed sensor devices that measure physical or environmental phenomena. Sensor nodes transmit their measurements wirelessly to an access point where the data is stored and/or analysed. Applications: health monitoring, earth monitoring, structure monitoring, agriculture, smart homes and many other industrial applications.		
Battery Powered Nodes	Energy Harvesting Powered	
 The energy stored in the battery is used to operate the sensor node (e.g., to power up sensing device, microprocessors, ADCs and radio frequency amplifiers). Much effort has been put into designing low-power communication protocols to extend the life time of wireless sensor nodes limited by the battery capacity. However, eventually the battery drains and the sensor node becomes useless until the battery is replaced. 	 Energy harvesting devices and rechargeable batteries conperpetual operation of the sensor nodes. Most of the available energy sources are limited and spectrum. New communication protocols that adapt to the random maximum out of the scarce energy available are needed 	oradic. mness of the energy source, and take the
Problems	Problems	
 Batteries are expensive, and take space, Batteries eventually die: In large networks it is expensive to change batteries manually, 	 Increasing the amount of harvested energy usually requ harvester. Storage units may be inefficient and leak energy. 	ires to increasing the cost/size of the

- ▷ In large networks it is expensive to change batteries manually,
- ▷ In remote or embedded networks it is difficult to access the nodes (i.e., vibration sensors
- Fixed or non-intelligent communication protocols for WSNs may waste the energy harvested at

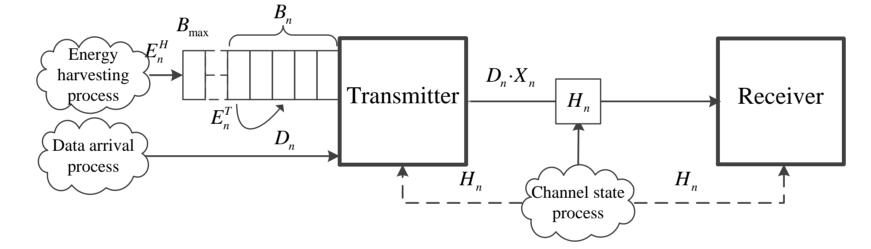

monitoring embedded in a bridge or environmental monitoring).

the nodes.

System Model

Wireless Sensor Node Model

A sensor node with an energy harvester is usually modeled by:



The load block depends on:

- Measured data (e.g., amount of data to be transmitted),
- State of the wireless channel (e.g., the channel is blocked or there is line of sight),
- Communication protocol (e.g., modulation) scheme, transmit power, ACK-retransmission protocol),
- Electronics of the wireless transmitter (e.g., RF amplifiers and antenna hardware).

Our Wireless Sensor Node Model

- ▶ The **load block** is modeled by a time-varying wireless channel, data measurements of random size, and the communication protocol implemented in the receiver.
- > The transducer and energy storage blocks are modeled by an ideal battery in which the energy arrives in packets at random instants.

- System is time slotted (TS),
- \blacktriangleright Transmitter has a rechargeable battery of size B_{max} ,
- Energy arrives in packets, and E_n^H energy units are harvested and stored in the battery at TS n,
- \blacktriangleright Data packet of size D_n arrives at the transmitter in TS n,
- \blacktriangleright Wireless channel is block fading, and H_n is the channel state in TS n,
- \triangleright Cost of transmission in TS n is E_n^T energy units: E_n^T is a function of H_n and D_n ,
- \triangleright D_n, E_n^H and H_n are modeled by Markov processes.

Wireless Communication Problem

At the beginning of each TS, the transmitter makes a binary decision: to transmit or to drop the incoming packet, with the objective of maximizing the total amount of transmitted data to destination during its activation time:

$$\max_{\{X_i\}_{i=0}^{\infty}} \lim_{N \to \infty} \mathbb{E} \left[\sum_{n=0}^{N} \gamma^n X_n D_n \right],$$

s.t. $B_{n+1} = \min\{B_n - X_n E_n^T + E_n^H, B_{max}\},$
 $X_n E_n^T \leq B_n,$
 $X_n \in \{0, 1\}.$

Contribution and Results

We find the best wireless communication protocol based on three different assumptions regarding the knowledge about the energy, data and wireless channel state processes at the transmitter.

Offline Optimization

Everything is known in advance:

▶ the instants and amounts of the energy/data arrivals and channel states are known in advance (non-causal knowledge),

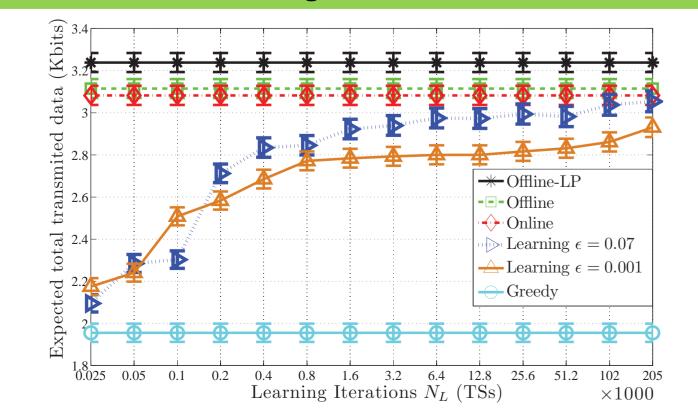
Online Optimization

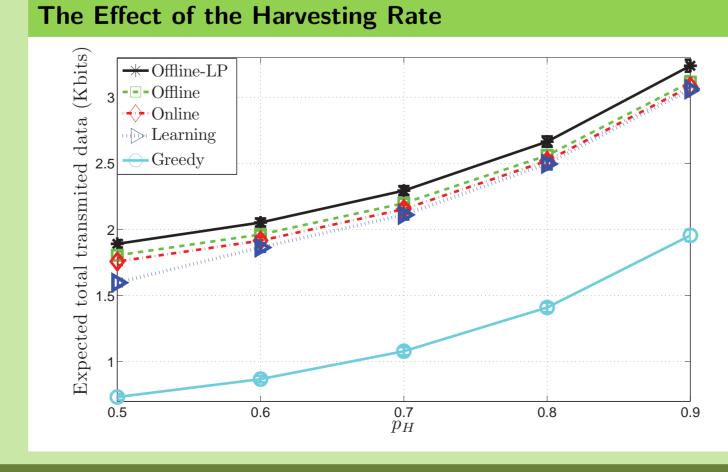
Statistical knowledge:

Energy/data arrival and channel are modeled as Markov

Machine Learning Optimization

Transmitter has **no** knowledge:


Parameters of the energy/data and channel process are not known,


▶ the optimization problem can be solved numerically using the Branch and Bound algorithm.

processes,

- ▶ Parameters of this processes are known,
- ► Optimization problem is solved using Dynamic Programming.
- ▶ We use Q-learning to find the optimal transmission policy,
- ▶ Q-learning learns iteratively, the statistics of the underlying Markov process and, after some learning iterations, converges to the optimal policy of the online optimization.

The effect of the Learning Time

Conclusions

- Energy harvesting WSNs require communication protocols that can adapt to the scarce and stochastic energy source,
- Energy harvesting process is stochastic: what is known about this process is critical,
- **Machine learning optimization** is important for practical applications because it optimizes the communication protocols without information regarding the energy source,
- ► We have shown that Q-learning quickly learns the system parameters and approaches the online optimization upperbound.