Energy Harvesting 2013 25th March

Development of Energy Harvesting (EH) Powered Wireless Communication Systems (WCS) for Autonomous Sensing

Dr Meiling Zhu CEng

Department of Manufacturing and Materials Cranfield University, Bedford, MK43 0FP, UK

My EH Research Group at Cranfield

- Started EH research in 2007
- Established the EH Group in 2009

- 3 Current projects form EPSRC and FP-7, around £650K
- 1 project awarded from EPSRC, around £815K
- Current group size and growth:
 - 2 RAs
 - 4 PhD students
 - Will recruit 3 RAs and 1PhD in 2013

Research Areas

- Multidisciplinary research
- Integrated system approach (1+2+3)
- A patented energy-aware configuration
- Achieved battery-free wireless sensing system

Research Activities

- Established internal and external (UK, EU and international) collaborations
- Working closely with industries, governments and research funding bodies

Problems we faced

Voltage discharge curve and transmissions for a commercial wireless sensor module tested

Current Research Focus

- Increase power harvested, through design, modelling and optimisation, and experimental validation, for generation of significantly usable power for applications
- Decrease power consumptions of wireless sensors, through integrated hardware and software approaches
- Integrate the system as a whole, through smart energyaware architecture (patent pending), to deal with mismatch between energy harvested and energy demanded by the end of users
- Aim: make the system work at high performance for applications

Two technology demonstrators developed

Strain EH powered WCS for aircraft structural health monitoring

Wearable EH

Harvesting aircraft wing strain energy

Cranfield

Real flight scenario

Energy harvesting challenges even more complex...

- Frequency range ~0.5-10Hz
- Normal conditions: str

stress ~80-85MPa

strain ~1.2*10⁻³

Power harvested at different frequencies

- 3 characteristics of the wireless sensing system
- Low power consumption in sleeping modes: 1.19 μA
- Smart energy-aware for energy flow management
- Multi-sensors

www.cranfield.ac.uk

Disconnect Module from Power Source

Testing results

Cranfield

Wearable EH for Battery-free Soldiers

Generation of electricity from human movement that makes soldiers "battery-free"

Using harvesting mechanism of "Pizzicato" excitation to increase the efficiency of EHs for low frequency wide bandwidth operation

Collaboration with **DSTL** and 6 other Universities in the UK

Modelling and Characterisation

Cranfield UNIVERSITY

Cranfield

Energy harvested

Demonstrator Performance

Achieved system performance:

- Power harvested: 1.2-20mW at 1-10Hz and 230-570με for 20cm²
- Capability to power wireless sensors continuously: 0.4-15 seconds
- Ultra-low current consumption in sleeping mode: 1.19µA
- Multi-sensors on-board:
 - ➤ 3-axis accelerometer,
 - temperature sensor
 - Light detector

EH Research Cluster in

Data gathering

(4)

onnected/De

Sleep Mode

Active Mod

Read sensors

Wirelessly

Hardware

Communication

Wireless semsors

Battery-free

Charging the

Operations Performed by Module are Discharging the

Charging Elemen

Software

Charging Flem

Voltage

Cranfield PZT bimorphs stator

Piezo cantilever harvester: 375µW/cm³ at 87 Hz & 0.23g (average at 200µW/cm³ in the UK and the EU)

Power Managemer d Energy Storage Wireless

Energy Harvester

ransmit/Receive

Battery-free wireless

sensor demonstrator One of the best in the

Hybrid: piezo/electromagnetic **Power increased** at least 100% Frequency tuneable

Plucked bimorph using pizzicato excitation for frequency-upconversion

rotor

plectra

Wind energy harvester

Embedded in

shoes harvester

Coupled piezoelectric-circuit finite element analysis (CPC-FEA) The first published FEA work in the world using ANSYS to

analyze power output