### E H – Progress and Challenges EH 2013

# perpetuum



### Roy Freeland, President





- 1. Commercialisation
- 2. Applications
- 3. Standards
- 4. Research and Government support

# 1. Commercialisation

### Enocean

- Not \$1.4bn forecast but very high volumes millions
- Particularly in Buildings
- > Using switch operation, photovoltaic and thermal
- > Ultra low power radio
- Simple star networks, short range
- Many Photovoltaic applications
  - Issues with maintenance and lifetime
- 802.15.4 WSN's
  - > ISA100.11a, WirelessHART, Zigbee, WIA
  - Progress slow- standards resolution, long field trials
  - > Now 100,000 + p.a. industrial (excl. Zigbee)

### The EnOcean Standard



| PROMOTERS<br>OPUS    |                |              |                   |                      | LEVIT                                                              | IN                   |         |  |
|----------------------|----------------|--------------|-------------------|----------------------|--------------------------------------------------------------------|----------------------|---------|--|
|                      |                | ROHM         |                   |                      | thermok                                                            |                      |         |  |
|                      | L              |              | PARTIC            | IPANTS               |                                                                    |                      |         |  |
| 14                   | AD HOC         | SADURA       | MATRIED           | 3 XM #2              | alahaE06                                                           | CC<br>sipisestek ser | Requis  |  |
| Anna                 | 40             | -            | 6                 | BECKHOFF             | BELIMO                                                             | -                    | lek     |  |
| Beelly               | <b>A</b>       | CAN260       | did in            | <b>0</b> 322° **     | <b>€</b> elta <sup>+</sup>                                         | () DELTA             | DIEHL   |  |
| PIRTIEN              | 100074         | DRSG         | <b>A</b>          | Gherge               | Rechofles                                                          | EHRT Canada          | Ellako  |  |
| embedded<br>Øsystems | 6              | OExOr        | <b>F</b> Fujikara |                      | Faectional                                                         | Funk Technik - er    | 0       |  |
| <b>()</b> :5         | GER            | Cipa-guncept | DruetCentre       | GSS                  | Assigned                                                           | Beenter              | HOME    |  |
| HOPPE                | -              |              | ILLUMBA           | IMANTINAL            | Infratori<br>Dynamic (I-chi Oscipe                                 | Intesise             | 2       |  |
| ITEE                 | Kichack setter | KINC         | L'fédomus         | Spinning", Junio     | skaller,                                                           | Hourse               | *       |  |
| MAICO                | maintronic     |              | -                 | MIRL                 | micropolt                                                          | mivune               | msr     |  |
| mullete              | (MECT          | -,00003-     | Nonsterie         | NEC                  | N Personal Competencies                                            | Transmond            | иттоата |  |
| TTEAST               | 0              | omnon        | Reus              | OSRAM O              | mitting                                                            | Davaras              | PEHA    |  |
| e permando           | <b>ELEMAN</b>  | новане       | RENESAS           | Regulva              | <reliable< td=""><td>RUSKIN<sup>-</sup></td><td>S</td></reliable<> | RUSKIN <sup>-</sup>  | S       |  |
| SAUTER               | SCHEMON        | -            | sensortec         | Ф BRVBA              | *\$4*******                                                        | SIEMENS              | SII 🍯   |  |
| SIMICS               | C host from    | Court same   | somfy             | SOMMER<br>Involution | • noneroer                                                         | spega <sup>,</sup>   | .steute |  |
|                      | TWOYD YUDGH    | TELEFUNKEN   | TIANSU            | Titus                | TRI                                                                | Q                    | USNAP   |  |
| unarmännik >>        | unotech .      | vicos 🎯      | VIESMANN          |                      | NITY                                                               | Vousen               | VS      |  |
| W/150                | Wantenare Cl   | WEINZIERL,   | wieland           | wit                  | OYAMAHA                                                            | They                 |         |  |

- **5** > 300 Companies supporting
- > 1100 Interoperable products
- > 250,000 building projects deployed
- Award Winning Green Technology
- IEC/ISO 15435-3-10 Standard
- The only wireless standard developed for Energy Harvesting

### >250.000 Building Projects Successfully Deployed









Hospitals



Schools, Colleges & Nurseries



**Hospitality** 



Retail



**Historical / Listed** 

**Buildings** 

**Industrial Plants** 



Residential

| 17 April 2013 EnOcean Alliance | Graham Martin



### London Buses



### PUSHING ALL THE RIGHT BUTTONS

Bell pushes are an essential part of everyday bus operations. However, due to their simple functionality they can be easily overlooked when it comes to designing the next generation of buses.

By Andy Overend, Sales Manager, BMAC Ltd



# 2. Applications

- My perspective focussed on 0.1-30mW for WSN's
- Industrial Machinery Monitoring
  - Power Generation
  - Petrochem
  - Oil and Gas
  - Water treatment
- Process Monitoring
  - Chemical Plants
  - Food, Brewing
- Rail



## Machinery/Equipment Health

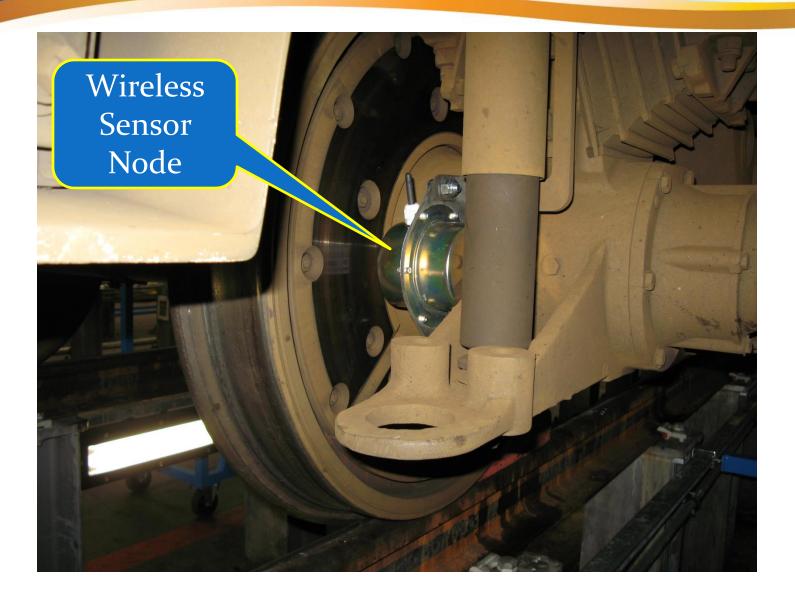




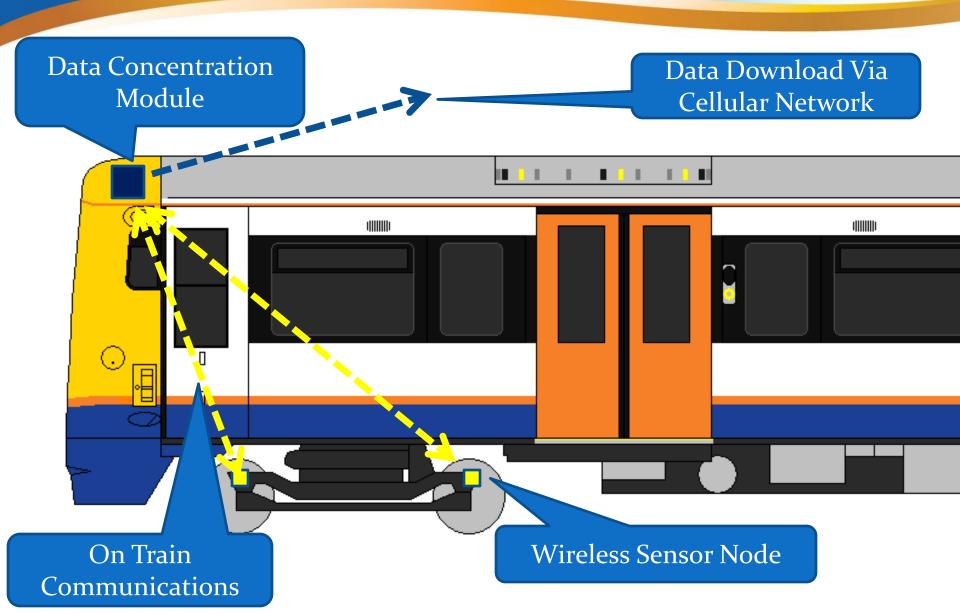


### **Process monitoring**



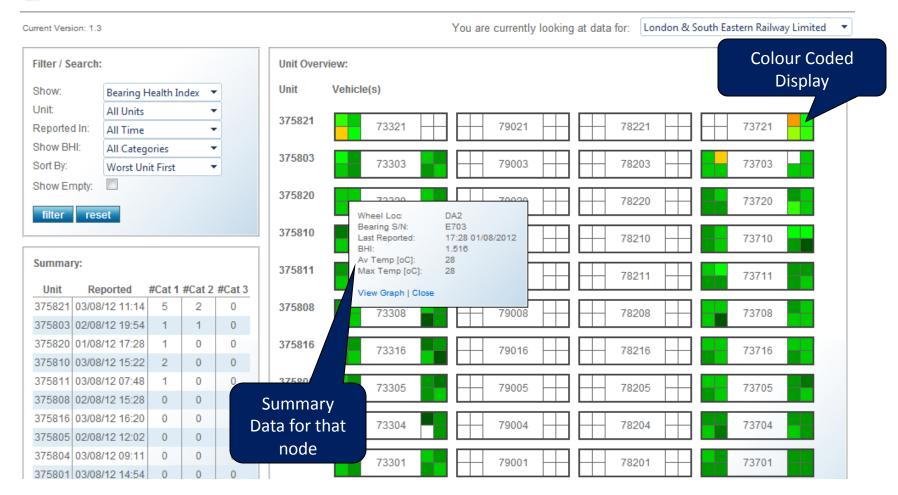





- Large market potential
- High vibration Levels but NOT fixed frequency
- Applications on passenger trains
  - Wheel bearing monitoring
  - Drive train monitoring
- Freight Wagons
  - >Many opportunities no power available

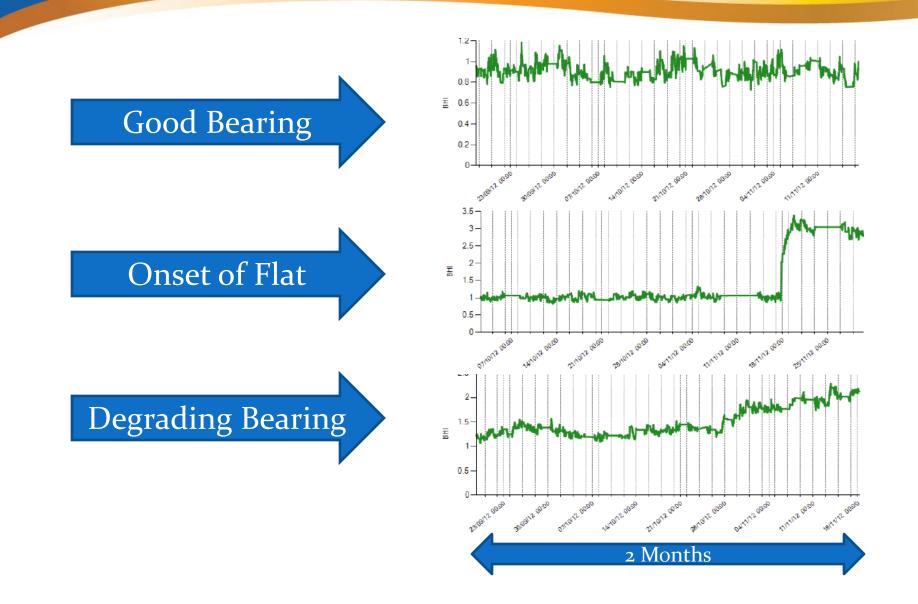
## **Example of WSN Installation**




## **On Board Communications**



### **Bearing Health Display**


#### 🔛 Monitryx Bearings - Home / Search



perpetuum

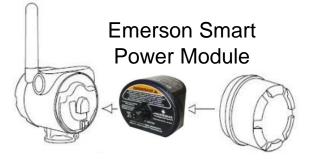
#### Perpetuum Confidential

### **Vibration Data**



perpetuum

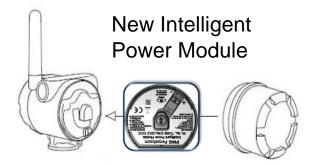
- Standards give end users confidence
- ISA100.18 Power Sources Working Group
  - Standards for interchangeability
  - Finalising draft
  - New Emerson Intelligent Power Module


GEHAM

>8V DC and 1mW plus



# Today vs. Tomorrow


# perpetuum



Limited Battery Life-cycle







Maximized Battery Life-cycle





## Intelligent Power Module (IPM)

### **Interchangeable**

Same form, function & fit as existing Emerson Smart Power Module



perpetuum

### **Intrinsically Safe**

- Can be changed in Hazardous areas
- No need to remove from process
- Failsafe / Keyed connection
- Short circuit protection

DANGER

HAZARDOUS AREA AUTHORIZED PERSONNEL ONLY

 Easy to replace – No special training required



### <u>Robust</u>

• Designed for Harsh Environments

Hazardous / Remote / Safety Restricted Areas



Add external power anytime

Vibration, Thermal (Micropelt, Perpetua) or 24VDC inputs

Capable

Maximum life at fast update rates

Minimized maintenance logistics

17

### 4. Research & Govt. Support

- Very large numbers of research projects it's fun!
- Technology Strategy Board
  - Energy Harvesting one of 8 priority initiatives
  - Energy Harvesting Special interest Group
  - EPSRC funded EH Network
- Many sources of funding available for Energy Harvesting

- > TSB Energy Harvesting applications competition
- EU Funded
  - o Triade
  - Zeropower
  - Materials solutions for durable energy-harvesters
  - WiBRATE next step

### WiBRATE





## Challenges



### • Harvesters

- Enough Power from available energy sources
- Lifetime/reliability
- Interchangeability
- Certification and specification etc for application
- Energy storage
- Credibility
- Low power data transmission
  - Excellent progress reducing power for sensors and microprocessors
  - Data transmission is now limiting factor
  - Limited by physics?
- Turn all the investment and funding into real applications

### Conclusions

 Real progress with rapidly growing volumes of Energy Harvesting

- > Applications with clear benefits
- New applications
  - Process monitoring
  - ≻ Rail

### Challenges

- Get out of the lab into real world
- Data transmission
- Innovate