Piezoelectric Energy Harvesting Powered Wireless Sensing System for Vibration Measurement

Meiling Zhu Energy Harvesting Research Group University of Exeter

www.exeter.ac.uk

EH Research Group at Exeter

Critical mass:

- 1 RF and 3 ARF
- 3 PhD students+1 recruited
- 1 Lecturer recruited

Research Areas:

- Energy harvesting
- Power management
- Wireless sensing
- Modelling and simulation
- Integration & characterisation

Research Challenges on Integration

Challenges on integration for wireless sensing

- Limited energy harvested (mW range)
- Mismatches between:
 - Energy harvested and energy demanded
 - Harvester electric load and WSN electric load connected
- High power consumption of WSN
- High power consumption of PM unit

Initial Integration

Using off-the-shelf commercially available products and "plug and play" method **do not work** for the EH integration

New System Architecture for Integration

Our strategies:

To maximise power extracted from harvesters :

Adaptive maximum power point (MPP) finding analogue circuit

To manage energy flow:

Autonomous energy-aware circuit and software

To reduce power consumptions Introducing two interfaces and reducing complexity of circuits

Our Approach to MPP Finding

MPP Performance of our Approach

Performance:

- Able to transfer MPP for variable vibrations and for any connected loads
- Tracking capability of up to 98.66%
- Consumes as little as 5.16 µW of power during operations
- Without start-up problem.

Our approach to energy flow management

Simple philosophy:

- \circ There is vibration, we will harvest energy and storage it without waste.
- \circ Once enough energy is stored, we will use the energy to power WSNs.

How to implement: smart switching through energy-aware interface (EAI).

How we developed the EAI

EAI benefits:

- Reduce the power consumption of WSNs during the sleep time down to about 1 µw.
- Allow harvested energy to be accumulated in the energy storage
- Allow to deal with mismatch of energy harvested and energy demanded

WSNs for Vibration Measurement

Software to Reduce the power consumption

Strain Energy Harvester for Aircraft Wing

Piezoelectric transducer onto composite materials

Advantages

- Flexible and durable
- Multifunction: energy generation, actuation/sensing
- Crack tolerant
- Conforms to curved surfaces
 For structural health monitoring

Energy Harvested Powered WSNs in Lab

Multichannel and On-line Characterisation

- Energy generation from harvesters
- Energy consumption in the system
- Powering the WSN capability

Energy Generation and Consumption

For peak-to-peak strain loading of 600µɛ at 10Hz

- An average power generated: 3.38 mW
- An average power delivered to WSN: 2.54 mW
- Sleep current $\rightarrow 1.26\mu A$
- η_{overall}=75%

Powering WSN Capability

For 10mF, peak-to-peak strain loading of 600µε at 10 Hz

After 26.69s, V reaches 3.16V, able to power the WSN for 1.16s after every 8.53s, i.e., 13.6% of duty cycle.

- 20.06mJ/active time
- 48×6+2=290 samplings @ 580 bytes(96*6+4)
- 34µJ/byte, including wake up, sampling and transmission
- Sensor current consumptions: 7.83µA (T), 7.42µA
 (H) and 12.45µA (A)

Comparisons of power with different Conf.

Configurations	\overline{P}_{g}	\overline{P}_{rec}	\overline{P}_{c}	η_{rect}	η_{all}
	(mW)	(mW)	(mW)	(%)	(%)
MFC+68.96kΩ	5.03	4.92		97.76	97.76
MFC+98 kΩ+22μF	3.44	3.34		97.15	97.15
10mF+MFC+EAI+WSN	0.50	0.35	0.35	70.00	70.00
10mF+MFC+PMM+EAI+WSN	3.38	3.34	2.53	99.00	75.00

Comparisons of currents with and without EAI

	Conf.	WSS software	Performance	Average sleep current (µA)
1	MFC+PMM+ <mark>EAI</mark>	Microcontroller in any sleep mode	WSS able to work	0.95
2	MFC without EAI	Microcontroller in sleep mode	V _{CS} reaches ~1.2V WSS unable to work	
3	MFC+PMM without EAI	Microcontroller in sleep mode	V _{CS} reach ~ 2V. WSS unable to work	
4	DC Power Source + PMM+EAI	Microcontroller in sleep mode	WSS able to work	28.3
5	DC Power Source + PMM+EAI	Microcontroller in deep sleep mode	WSS able to work	17.3

Welcome to Energy Harvesting Demonstration Event at Exeter

Monday, 13th Jun 2016

www.exeter.ac.uk

Acknowledgments

EPSRC Engineering and Physical Sciences Research Council

