

HARVESTING NONLINEAR VIBRATION WITHIN HIGH G ROTATIONAL SYSTEMS

James Horne and Yu Jia Department of Mechanical Engineering, University of Chester, Chester, UK JamesHorne0503@gmail.com

Introduction

• Legislations in recent years have made it mandatory for new cars in the EU and US to have tire pressure sensors [1].

• This motivates higher need for autonomous sensors powered by energy harvesters [2].

Full setup

- The computer fan is controlled by varying the voltage through a DC supply
- The fan rotation is initiated at 5 V and reaches 3000 RPM at 12 V.
- At full speed the mass experiences around 500g as per $\omega^2 r$.
- Non-linear vibrational phenomena is being investigated to overcome the suppressive effects of the high g environment
- Application of vibration control allows various scenarios to be explored to interrogate potential improvement in high g environments

- The centripetal acceleration observed in automotive wheels can reach several thousand g's.
- High amounts of centripetal acceleration manifests as a strong artificial gravitation field and may supress the oscillation of linear oscillators [3].
- This study intends to utilise the artificial gravity induced non-linear vibration to increase the amount of energy harvested in high g rotational environments [3].

Experimental device

- A modified 140mm computer fan is being used to hold a piezoelectric cantilever (Figure 1)
- The device uses a bespoke cradle to hold a piezoelectric cantilever
- The cradle has been designed so that the cantilever is attached to the radial axis with the mass pointing towards the centre of

- The speed of the fan is monitored using the on-board tachometer in an Arduino Uno
- Data from the Arduino can used to calculate the forcing conditions subjected to the piezoelectric cantilever oscillator.
- A mechanical shaker is used to experimentally simulate ambient vibration.
- The device can be mounted vertically (as pictured) or horizontally on the shaker
- The shaker is controlled by a function generator and a power amplifier
- The signal from the piezoelectric device is recorded on an oscilloscope.

Methodology

- Investigation of 6 different scenarios:
 - Vertically mounted, shaker running, rotating
 - Vertically mounted, shaker running, no rotation
 - Vertically mounted, shaker off, rotating

Conclusion

- This study lays the basis for establishing a theoretical framework to devise a new type mechanical amplifier in rotational systems.
- This novel mechanical amplifier can be used to design more efficient vibration energy harvesting solutions in rotational systems.

References

[1] "Tyre pressure monitoring system legislation," *Bartec Auto ID*, 2016. [Online]. Available:

http://www.bartecautoid.com/tpmslegislation.html.

[2] C. R. Bowen and M. H. Arafa, "Energy harvesting technologies for tire pressure monitoring systems,"

Adv. Energy Mater., vol. 5, no. 7, pp. 1–17, 2015.

[3] Y. Zhang, R. Zheng, T. Kaizuka, D. Su, and K. Nakano, "Study on Tire-attached Energy Harvester for Low-speed Actual Vehicle Driving," J. Phys. *Conf. Ser.*, vol. 660, no. 1, p. 12126, 2015.

rotation

- Copper strips are being used as commutators to allow power readings to be taken
- The mounting of the fan has been made using aluminium and carbon fibre to reduce weight
- A second cradle has been installed without a piezo device to keep the system rotationally balanced

- Horizontally mounted, shaker running, rotating
- Horizontally mounted, shaker running, no rotation
- Horizontally mounted, shaker off, rotating
- Experiments conducted with various signals to increase the yield of the energy harvester
- Initial signals use the natural frequency of the device

Acknowledgements

This work is supported by the Smart Microsystems Research Group and Department of Mechanical Engineering at the Thornton Science park.

Special thanks to Michael Horne, Maisie Snowdon, Graham Sparey-Taylor, Rory Thomson, Jakub Gacka, and Piotr Sananowicz for technical support.

Function generator

Oscilloscope

Figure 3: Arduino Uno. *Source:* https://www.arduino.cc

Commutator

Cantilever

Arduino Uno

Shaker attachment

Figure 1: Modified 140mm fan

Figure 2: Full experimental setup

DC power supply

Energy Harvesting 2017, April 5, Manchester Town Hall, Albert Square, Manchester, M60 2LA, United Kingdom