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The Concept

2



Challenges for Drone Charging

Dynamic system challenges:

1. Light weight system

2. High link efficiency capability

independent of k

3. Optimal reflected load with varying k

4. High efficiency of the inverter and

rectifier with varying k and varying

power throughput
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Overview

• Light weight system and high link efficiency capability

independent of k

• Optimal reflected load with varying k

• High efficiency of the inverter and rectifier with varying

k and varying power throughput

• Demo video

• Conclusions
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Light Weight and Link 

Efficiency Capability
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Commercial systems: Automotive and phones
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Most use ferrite to enhance 
coupling: too heavy

Witricity EV charger
• RX ~10 kg, TX ~30 kg, 85 kHz 

Qualcomm Halo
• 20 kW, 20 kg, 20kHz

• Qi standard very short range

• Limited power levels 



Reliance on High Q, not high k

Efficiency given by:

Need to maximise k2Q1Q2

k2Q1Q2 > 10 for η > 50%

k2Q1Q2 > 350 for η > 90%
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High Frequency is Key

Efficiency given by:
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 Secondary resonance

Optimal load

skin effect

radiation

• High frequency (MHz) 

allows high Q

• High frequency allows 

removal of ferrite

• Skin effect allows very 

thin conductors

Light weight and varying k capability are possible with high frequency, high Q coils



Optimal Reflected Load
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Inductive Link Properties – varying RL and varying k
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• Purely real across all values of values of RL and k with secondary resonance.

• Reflected reactance

• Cause detuning of inverter – and transmit current rapidly drops

• Inefficient to transfer reactive power across link

Not true for parallel secondary resonance:  hence we choose series 

compensation



Rectifier’s effect on reflected load

• The previous analysis is only valid if the rectifier has resistive input 

impedance. 
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• The class-D rectifier is current 

source driven (suitable for a series 

tuned secondary)

• The class-D rectifier presents a 

purely real load on the series tuned 

circuit, independent of its DC load

“sim card” 

rectifier



High Efficiency with Varying 

k and R
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Requirements to drive the link

• Poor power factor unless leakage inductances are resonated out –

because coupling factor typically < 10%

• Only a fraction of the applied voltage is seen at air gap voltage

• Traditional to resonate out primary inductance to reduce VA rating of 

drive circuit
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Common misconception:  poor coupling factor = poor efficiency



Inverters

• Conventional hard-switching not suitable in MHz region

• Device switching times become comparable to driving signal period

• Can be inefficient at higher frequencies

• Soft switching inverters (eg ZVS Class-D and Class-E) employ zero-

voltage switching to minimise power dissipation 

• Class-D inverters: popular with low-power systems adhering to Qi or 

A4WP standards

• Lower normalised output power compared to Class-E

• Require floating gate drive

• But can operate over larger load range with ZVS if the switching frequency is 

below resonant frequency of output load network.
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Class E

• Standard Class E circuit allows soft switching, and has only 1 switch, 

which is low side referenced.  For this to be true, the load network is 

slightly inductive 

• In this circuit, the load resistor is connected via an LC series circuit 

(operating slightly above the resonant frequency to present an 

inductive load) so that a square wave gate signal presents an almost 

pure sine wave voltage across the load
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Graph from 
https://www.eeweb.com/blo
g/alex_lidow/how-to-gan-
eganfets-for-high-frequency-
wireless-power-transfer



Class E switching waveforms 

Class E switching waveforms 

Optimum switching
RL=Ropt

Suboptimum switching
RL<Ropt

Non-optimum switching 
RL>Ropt

ZVS & 

ZDS

Body diode 
conduction

lower efficiency

Hard switched, shunt

capacitor discharge 

Voltage stress 

increase

• Optimum switching operation is lost once the load shifts from its optimum value

• Voltages and current can be quite large



Load Independent Class EF Inverters

Class-EF2 and Class-E/F3 inverters

• Although Class-E inverters can achieve 
ZVS and ZCS, their voltage and current 
stresses can be large

• Adding series LC resonant network in 
parallel with MOSFET of Class-E inverter 
can reduce voltage and current stresses
• Improved efficiency of inverter

• Greater than twice the power handling

• Traditional to added network tuned to 
either 2nd harmonic (Class-EF2) or 3rd

harmonic (Class-E/F3) of switching 
frequency

• However, tuning to around 1.5 times the 
resonant frequency allow load independent 
operation to be achieved
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Load-independent Class EF inverter 

Tune the network to around 1.5 times the driving frequency 

ZVS switching

RL=Rnom

ZVS switching

RL=0 (short circuit)

ZVS switching 

RL=2Rnom

ZVS operation is maintained over a wide load range

ZVS ZVS ZVS
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Load-independent Operation with Constant Current



It Flies!  Batteries NOT included!
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Conclusions

• Flying a drone via IPT is difficult because

• Light weight

• Rapidly varying load

• Rapidly varying k

• Use series tuning to reflect a purely real load to the primary via use of a 

class D rectifier, or a class E with minimal input reactance change

• The load independent inverter can achieve zero voltage switching as k 

changes and as demand power changes

• The rectifier is constructed on a PCB around the size of a standard sim card

• The transmitter uses Gallium Nitride FETs to allow efficient operation

A century after Tesla – we can operate at much higher frequencies 

with high efficiency drive circuits and this gives us high Q, light-weight 

systems with low reliance on k
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