

Sublimation Engines — some proof-ofconcept results

Rodrigo Ledesma-Aguilar

Smart Materials and Surfaces Lab Northumbria University

Leidenfrost Effect

Source: flickr.com

Leidenfrost (1756)

On hot enough surfaces a drop will skid off with very little friction

Leidenfrost Drops

Underpinning physics

- 1. At the 'Leidenfrost point' the evaporation time peaks
- 2. This corresponds to the transition from volume boiling to thin film boiling.
- 3. Above the Leidenfrost point the drop sits on a layer of its own vapour.

Biance, Clanet & Quéré, Phys. Fluids 15 1632 (2003)

The bottom surface acts as a superhydrophobic material

Leidenfrost Blocks

Dry-ice sublimates at -78 C at STP

The CO₂ gas expelled leads to the same effect, leading to low-friction levitating blocks

Self-propulsion

Linear Ratchets

- 1. A linear asymmetric ratchet will induce the self-propulsion of the Leidenfrost drop or block.
- 2. The translational motion occurs in the downhill direction of the ratchet

Image: Linke et al (2006)

Image: Lagubeau et al (2011)

New concept – A Leidenfrost Engine

An engine which converts temperature differences into mechanical work via the Leidenfrost Effect.

Turbine-like surfaces

Aluminium substrates using Computer Numerical Control (CNC) machining

Our surfaces are based on axial gas turbine designs

R=0.75-2 cm, *N*=10, 20, 30

From orbiting/spinning drops to rigid-body rotational motion

Rotation via Droplet Coupled Disks

Rotational Motion via Sublimation

A Leidenfrost Engine

Supplementary Video 1

Gary Wells, Rodrigo Ledesma-Aguilar, Glen McHale and Khellil Sefiane

Rotation of a Dry-Ice Block

Sublimation Heat Engine Concept

Sublimation Thermal Cycle

- 1. Sublimation (solid-vapor) equivalent to the Rankine cycle used in steam powered engines
- 2. The working substance is a solid (e.g. CO_2 but could be other ices such as H_2O or CH_4)
- 3. Harvest thermal energy Q_{in} via difference in temperature between reservoirs at T_h and T_c
- 4. Released vapor is rectified to produce mechanical work, W
- 5. Cooling releases Q_{out} to surroundings
- 6. Maximum theoretical efficiency limited by Carnot engine efficiency $\mathcal{E}=1-T_c/T_h\approx 1-T_c/T_{ave}\approx 0.67$

<u>Principle</u>

Realization

Efficiency: $\varepsilon = W/Q_{in}$

Hot turbine

Physical Mechanism

- Estimate rate of evaporation from surface of levitating dry ice
- Energy flux across vapour layer by conduction
- Vapour pressure supports the levitation of the drop or block
- Rectified vapour flow induces a net viscous drag
- This drag results in a net torque driving the rotational motion

Theoretical Model

<u>Governing Equations in the gas phase</u> Follow approach by Quéré and co-workers (2003-2013): Mass and momentum conservation

 $abla \cdot \mathbf{v} = 0$

$$\rho(\mathbf{v}\cdot\nabla)\mathbf{v} = -\nabla p + \eta\nabla^2\mathbf{v} + \rho\mathbf{g}$$

Low Reynolds number limit

$$\mathrm{Re} \equiv \frac{\rho h^2 U}{R\eta}$$

Mass conservation

 $\pi RhU \sim \pi R^2 v_n$

Evaporation speed

$$v_n \approx \frac{\lambda}{\rho \Delta H} \frac{\Delta T}{h}$$

$$\operatorname{Re} \sim \frac{\lambda \Delta T}{\eta \Delta H} \approx 0.01$$

Theoretical Model

Once the pressure field is found we are able to compute net forces and torques.

Net lift force

$$\mathbf{F} = N \int_0^R r dr \int_0^{2\pi/N} p(r, heta) d heta \mathbf{\hat{z}}.$$

$$\mathbf{F} \approx \frac{3\pi\eta v_{n0}R^4}{2h_0^3} \mathbf{\hat{z}}.$$

The balance of this force with gravity sets the thickness of the vapour layer

$$h_0 = \left(rac{3}{2}
ight)^{1/4} \left(rac{\eta\lambda\Delta T}{
ho\Delta H
ho_{
m f}g}
ight)^{1/4} rac{R^{1/2}}{h_{
m f}^{1/4}}.$$

When the thickness of the vapour layer becomes comparable to the thickness of the ratchet teeth we expect hampering of the rotational motion

Critical mass
$$mg = \frac{3\pi}{2} \left(\frac{\eta \lambda}{\rho \Delta H} \right) \frac{\Delta T R^4}{H^4}$$

Experiments: to spin or not to spin?

- 1. Experiments with changes in (ΔT , R, H) to work out probability of dry ice disk spinning (R=7.5-20 mm, T_h =300-500 C, H=165-229 µm)
- 2. ca. 60 experiments per mass to determine probability P_S with m_c defined by $P_S=0.5$

Theoretical Model

Local viscous stress

$$\tau_{\theta z} = \eta \frac{\partial v_{\theta}}{\partial z} = \frac{2z - h}{2r} \frac{\partial p}{\partial \theta}$$

Average viscous stress

$$\hat{ au}_{ heta z} = rac{N}{\pi R^2} \int_0^R r dr \int_0^{2\pi/N} au_{ heta z} d heta$$

Net torque acting on the top surface

$$\mathbf{T} = -N \int_0^R r^2 dr \int_0^{2\pi/N} au_{ heta z} d heta \mathbf{\hat{z}}$$

$$\mathbf{T} = c \left(\frac{\rho \Delta H}{\eta \lambda}\right)^{1/2} \frac{(mg)^{3/2} R \tan^3 \alpha}{\Delta T^{1/2} N^4} \mathbf{\hat{z}}_{1}$$

Experiments: torque scaling

- 1. Measured angular velocity of dry ice disks \Rightarrow angular acceleration and hence torque (Γ =I α) (R=0.75-2 cm, T_h =350-500 C, α =2.25-4.15°, m=0.19-5.13 g)
- 2. Minimum torque Γ_{min} =0.0109 µN m.

Conversion to electrical power

Stator coils

Neodymium Magnets

Commutator Ring

Dry Ice Block

Turbine

Confinement Ring

Hot Plate

Smart Surfaces & Materials Lab

Conversion to electrical power

- 1. 8-lobed commutator with magnets attached to a dry-ice rotor
- 2. 8-lobe multi-segment induction coil system lowered into proximity to the rotating assembly
- 3. Generated voltage visualized on an oscilloscope
- 4. Low phase transition-to-rotational energy efficiency most energy expended on levitation, but future designs can avoid this

Applications of an LF Engine

Microfluidics

1. MEMS micro-heat engines for scavenging waste energy (e.g. Epstein et al, IEEE Transducers 1997, Fréchette et al, PowerMEMS 2003 Conferences)

Space engineering

- 1. Large temperature differences exist
- 2. Deep space has abundance of locally available dry ices, e.g. H₂O, CO₂, CH₄
- 3. Idea of sublimation for use in micro-thrusters is an established space concept

Image: Fréchette et al, (2003)

Applications of an LF Engine

Linear Gullies on Mars

- 1. Hypothesis: Sliding dry ice blocks due to seasonal temperature variations
- 2. Tested idea on slopes of dunes in the desert
- 3. Sublimation Leidenfrost effect

Diniega *et al, Icarus* (2013) **225**, 526-537. Jet Propulsion lab video archive – "Dry Ice Moves on Mars - June 11, 2013" (Truncated version from http://mars.nasa.gov/mro/multimedia/videoarchive/)

Home » Technology » Engineering » March 5, 2015

Breakthrough in energy harvesting could power life on Mars

Mashable.com

Summary

Summary

- Turbine-like substrates for rotation (orbiting and spinning motions)
- Exemplification of rotation using solid CO₂ (and metal disks coupled by droplets)
- Concept and demonstration of a "Leidenfrost Engine" driven by solid-vapor and liquid-vapour phase changes
- Concept and demonstration of a "Sublimation Heat Engine"

Fundamental

LF temperature dependence on surface properties Interaction between LF levitators, rotors, propellers

Applied

Efficiency of the LF engine – optimisation through surface geometry and materials

Main route: microfluidics – low gravitational effects, increases surface to volume ratios

Acknowledgments

Prof Khellil Safiane, Dr. Adam Stokes, Prof. Anthony J. Walton Dr Gary Wells Prof. Glen McHale

You can check our paper here:

Wells, et al. 'A sublimation heat engine', Nature Communications, 6 6390 (2015)

