Flexible Self-powered Sensors by Using **Organic Thermoelectric Effect**

<u>Kening Wan¹</u>, Prospero Taroni Junior¹, Zilu Liu², Yi Liu¹, Giovani Santagiuliana^{1,3}, Ying Tu¹, Han Zhang^{1,3}, Oliver Fenwick¹, Steffi Krause¹, Mark Baxendale¹, Bob C. Schroeder², Emiliano Bilotti^{1,3,*}

¹ Queen Mary University of London ² University College London ³ Nanoforce Technology Ltd.

E-mail: e.bilotti@qmul.ac.uk k.wan@qmul.ac.uk

Introduction

- > Smart electronic devices are in high demand, especially flexible, stretcheble durable and low costs.
- \succ Thermoelectric energy harvesting for self-powered sensors.
- > Organic thermoelectric materials for flexibility, processability and reduced costs.

Results

Mechanical properties

Figure 1 The tensile properties for self-standing PU/Na_x(Ni *-ett)*^{*n*} *composites films. Optical pictures showing flexibility* under bending and twisting.

- Self-standing films formed successfully.
- Strain properties increase massively with PU (Lycra[®]) content.

Self-powered sensing

Figure 3 Signals change under cyclically tensile strain, selfpowered by Seebeck voltage generated at $\Delta T \sim 50K$.

- Sample resistance changes with strain.
- Both current (I) & voltage (V) across the load change with stain. ╘┢╱╢╷

 $\mathbf{U}_{TE} * R_L$

 $R_s + R_L$

Visible light/temperature sensing

Application

Figure 5 It as a self-powered wearable sensor for index finger positions, at $\Delta T \sim 20$ K. And it harvests secondary heat as a generator.

Multi-leg TE device

Figure 6 The power output (left) of 6-couples TE device under $\Delta T \sim 20$ K. Two different designs for TE device assembling (right).

 $Na_x(Ni-ett)_n$ content (wt.%)

Figure 2 PU/Na_x(Ni-ett)_n blends films (right) and their thermoelectiric properties (left).

- Both electrical conductivity & Seebeck \checkmark coefficient increase with $Na_x(Ni-ett)_n$ content.
- 50 wt.% composite film is selected for self-powered sensing devices.

Conclusions

- Improved mechanical properties and processability, maintaining thermoelectric properties have been achieved.
- Strain, visible light and temperature self-powered sensing has been examined.
- The concept of wearable self-powered sensing has been demonstrated.
- Flexible TE devices have been assembled to improve device power output.

Figure 4 Signals change while light irradiated cyclically over time, self-powered by Seebeck voltage.

- \checkmark Visible light irradiation mainly changing the sample temperature.
- \checkmark Electrical resistance linearly decreases with light intensity increasing.

Figure 7 Demonstration of a 90-couples "magic ball" shape conformable TE device.

 \checkmark Future large-scale industrial adoption. P-n junction is robust and TE device remains flexible.

References

[1] Jiao, Fei, et al. *Phil. Trans. R. Soc. A* 372.2013 (2014). [2] Sun, Y, et al. Advanced Materials. 24.7 (2013). [3] Menon, Akanksha K., et al. Journal of Applied Polymer Science 134.3 (2017).