
Introduction

Results

Methods

Conclusions

 Improved mechanical properties and processability, maintaining thermoelectric 

properties have been achieved.
 Strain, visible light and temperature self-powered sensing has been examined. 

 The concept of wearable self-powered sensing has been demonstrated.
 Flexible TE devices have been assembled to improve device power output.
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 Smart electronic devices are in high 
demand, especially flexible, stretcheble
durable and low costs.

 Thermoelectric energy harvesting for 
self-powered sensors.

 Organic thermoelectric materials for 
flexibility, processability and reduced costs.
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 Self-standing films formed successfully.
 Strain properties increase massively 

with PU (Lycra® ) content.
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Application

Twist

 Sample resistance changes with strain.
 Both current (I) & voltage (V) across 

the load change with stain.

Figure 3 Signals change under cyclically tensile strain, self-
powered by Seebeck voltage generated at T ~ 50K.

Self-powered sensing

Figure 4 Signals change while light irradiated cyclically 
over time, self-powered by Seebeck voltage.

• Visible light/temperature sensing

• Strain sensing

 Visible light irradiation mainly changing 
the sample temperature.

 Electrical resistance linearly decreases 
with light intensity increasing. 

Figure 5 It as a self-powered wearable sensor for index 
finger positions, at ΔT ~ 20 K. And it harvests secondary 
heat as a generator.

Multi-leg TE device

Figure 6 The power output (left) of 6-couples TE device 
under ∆T ~ 20 K. Two different designs for TE device 

assembling (right).

Figure 7 Demonstration of a 90-couples “magic ball” 
shape conformable TE device.

 Future large-scale industrial adoption.
 P-n junction is robust and TE device 

remains flexible.

Bend

Figure 1 The tensile properties for self-standing PU/Nax(Ni 
-ett)n composites films. Optical pictures showing flexibility 
under bending and twisting.

Mechanical properties

Figure 2 PU/Nax(Ni-ett)n blends films (right) and their 
thermoelectiric properties (left).
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 Both electrical conductivity & Seebeck
coefficient increase with  Nax(Ni-ett)n

content.
 50 wt.% composite film is selected for 

self-powered sensing devices.
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