Power from the beat of the heart

Zarlink Semiconductor Trace Wotherspoon

Energy Harvesting From Human Power Imperial College London 9th Nov 2010

Introduction

- SIMM collaboration funded in part by the TSB(1) to develop energy harvesting technology for next generation pacemakers
- Consortium of Engineers and Cardiac Surgeons
- A prototype has been developed and proven to generate power during a clinical trial
- Showcased at the prestigious American Heart Association conference in New Orleans November 2008
- Patented design won the IET Emerging Technologies award in London November 2009

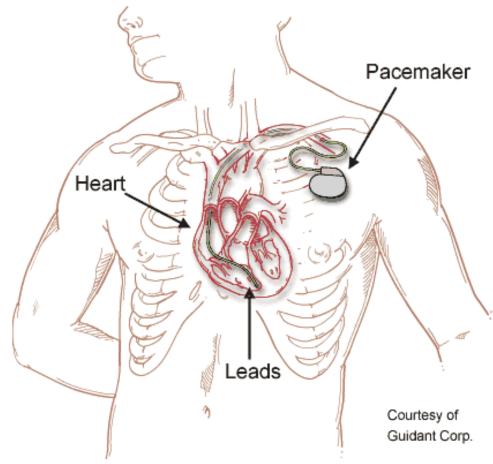
(1) The consortium wish to acknowledge the Financial & Managerial support received from The Technology Strategy Board

Design Brief

- Active cardiac implant market circa 0.75M units per annum
- 50% of pacemaker is battery; reducing or removing allows better treatments and patient comfort
- Pacemaker works down to 2.1V consumes circa 25-30µW
- Operating temp 37°C
- Must be reliable 7 yr operation life

perpetuum

Sounds good many EH option can generate required energy



Background - Implant Procedure

- The lead is inserted via subclavian vein
- The lead is guided along the sub-clavian vein, in & through the right atrium & tricuspid valve, into the apex of the right ventricle
- The pacemaker control box (with integrated battery) is placed under the skin below the left collarbone
- Procedure takes 1hr or so

Design Brief - Clinical

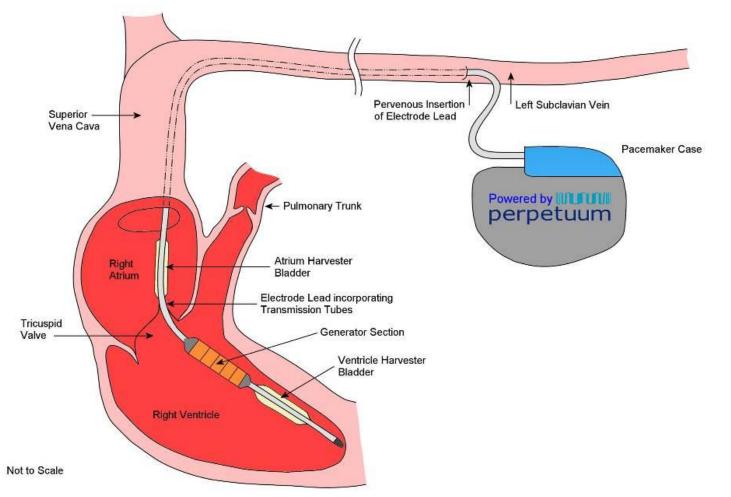
- <u>Must not</u> impact the patient physically or clinically, more than the current device when generating power
 - Heat damage max 1°C
- <u>Must</u> be compatible with existing medical procedures
 - If not, will lead to training issues cost
 - Delayed or non existent market take up
- <u>Must</u> work from involuntary human activity
 - Patient may have restricted mobility (heart condition)
 - Can't rely on patient applying external devices
 - Needs to generating power even when sleeping and lay down

Design Options 1

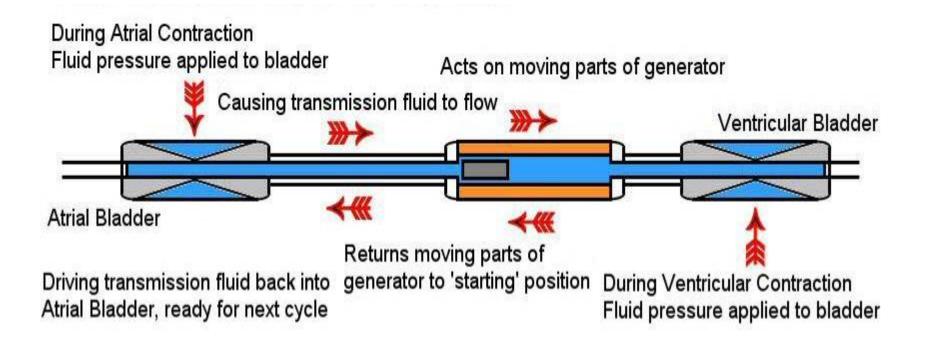
- Piezoelectric devices
 - Could work but piezoelectric device must be placed in relation to implant procedure; can't go outside of heart, for example
- Vibration
 - Biological frequencies 10s of Hz and irregular
 - Heart rate 40—120bpm and variable, rules out vibration type scavengers (typically kHz)
- Thermal
 - Heart is deep in the chest cavity thermal gradient low

Design Options 2

- Solar
 - Patent for using solar to power an implant how will it be placed without impacting implant procedure
- Magnetic Induction
 - Would work but relies on patient which can't be guaranteed
- Offset Mass
 - Relies on patient movement, largest motion away from the heart
- Glucose fuel cell
 - Development from University Freiburg interesting runs for 200days



Proof of Concept Solution



Principal of Operation

Areas for Design Improvement

- Induction Coils
 - Small dia (4mm) large number of turns to generate significant voltage- fine wire gauge required <25um (high resistance loss)
- Energy conversion
 - Need efficient methods to convert energy generated into usable form local to generator
- Balloon Bladders
 - Trade-off between biocompatible materials and amount of energy transferred. Some OEM's have exclusive rights to materials
- Fluid Flow
 - Small diameters give + magnet assembly give irregular fluid flow
- Magnetic Field
 - Magnet and travel is longitudinal does not give optimised field pattern

Key Lessons

- Involve and clinical partner early
- Consider the design from system level factor in loss due to energy conversion
- Size is key limitation fine wire, small components, high motion resistance
- Biocompatible materials OEMs hold licence rights
- Long gestation period OEMs like low risk, TTM circa 5yrs

Key Areas for Research

- P of C generated 8-16uW @ 200-300mV, challenge Increase voltage 10x, Increase power 2x
- Mechanical more efficient transfer of energy to moving part
 - Bladders absorbed energy
 - Reduce energy loss in moving part
 - Optimisation of magnetic field
- Electronic- need efficient conversion of generated energy into usable form local to generator
 - Multi-source generator
 - Multi-input high efficiency energy conversion chip required **
- MRI Compatibility ????

Self-energising Implantable Medical Microsystems

http://www.implantgen.com/

The consortium wish to acknowledge the Financial & Managerial support received from The Technology Strategy Board

