

Thermoelectric Energy Harvesting: Micro and Nanoscale

m

i ma

**Prof Douglas Paul** 

**Director, James Watt Nanofabrication Centre** 

**EPSRC III-V National Facility** 

Douglas.Paul@glasgow.ac.uk



## Famous Glasgow Scholars in Energy



William Thomson (Lord Kelvin)



**James Watt** 



William John Macquorn Rankine



**Joseph Black** 



**Rev Robert Stirling** 



**Rev John Kerr** 



#### **The Seebeck Effect**



Open circuit voltage, 
$$V = \alpha (T_h - T_c) = \alpha \Delta T$$

Seebeck coefficient, 
$$\alpha = \frac{\mathbf{d}\mathbf{V}}{\mathbf{d}\mathbf{T}}$$

units: V/K

) Seebeck coefficient =  $\frac{1}{q}$  x entropy  $(\frac{Q}{T})$  transported with charge carrier



#### **Thermoelectric Power Generating Efficiency**



Power factor =  $\alpha^2 \sigma$ 

Impedance matching and maximum power point tracking are key for thermoelectrics





0

At the mm and µm scale with powers << 1W, thermoelectrics are more efficient than thermodynamic engines (Reynolds no. etc..)



## **Thermoelectric Applications**

#### **Cars: replace alternator**



#### NASA Voyager I & II



Peltier cooler: telecoms lasers







#### Temperature control for CO<sub>2</sub> sequestration

Powering autonomous sensors: ECG, blood pressure, etc.



## **GREEN Silicon**

# Generate Renewable Energy Efficiently using Nanofabricated Silicon (GREEN Silicon)



D.J. Paul, J.M.R. Weaver, P. Dobson & J. Watling University of Glasgow, U.K.

G. Isella, D. Chrastina & H. von Känel L-NESS, Politecnico de Milano, Como, Italy

J. Stangl, T. Fromherz & G. Bauer University of Linz, Austria

#### E. Müller

ETH Zürich, Switzerland

http://www.greensilicon.eu/GREENSilicon/index.html



## **Bulk Thermoelectric Materials Performance**



Nature Materials 7, 105 (2008)



- Bulk n-Bi<sub>2</sub>Te<sub>3</sub> and p-Sb<sub>2</sub>Te<sub>3</sub> used in most commercial thermoelectrics & Peltier coolers
- But tellurium is 8<sup>th</sup> rarest element on earth !!!



Bulk Si<sub>1-x</sub>Ge<sub>x</sub> (x~0.2 to 0.3) used for high temperature satellite applications



Increase α through enhanced DOS:

$$\alpha = -\frac{\pi^2}{3q} \mathbf{k_B^2} \mathbf{T} \left[ \frac{\mathbf{dln}(\mu(\mathbf{E})\mathbf{g}(\mathbf{E}))}{\mathbf{dE}} \right]_{\mathbf{E} = \mathbf{E_F}}$$





## **GREEN Silicon Approach**



Si/SiGe technology -> cheap and back end of line compatible



## **Thermoelectric Low Dimensional Structures**





## Wafer Scale Microfabrication of Generators



http://www.micropelt.com/

#### **Vertical Generator**







750 m<sup>2</sup> cleanroom - pseudo-industrial operation

Vistec VB6 & EBPG5



**E-beam lithography** 



Süss MA6 optical lith

#### **10 RIE / PECVD**





£54M funding: 17 technicians + 4 PhD technologists



**EPSRC III-V National Facility (and Electronics Design Centre**)



Processes include: MMICs, III-V, Si/SiGe/Ge, integrated photonics, metamaterials, MEMS (microfluidics)



**Commercial access through Kelvin NanoTechnology** 



http://www.jwnc.gla.ac.uk





**Veeco: AFMs** 





# **Electron Beam Lithography Capability**

30 years experience of e-beam lithography



#### Penrose tile: layer-to-layer alignment 0.46 nm rms





Vistec VB6



Vistec EBPG5

Alignment allows 1 nm gaps between different layers

0kV 11.9mm x9.00k SE(U)



# Micro and Nanotechnology from Glasgow







# Who do we make devices for?





# Measuring Lateral $\alpha$ , $\sigma$ , $\kappa$ and ZT

thermometers Hall bar geometry **heaters** Heat transport easier to model Si Si **Accurate electrical** measurements easy Thermal conductivity most difficult

5.0kV 14.9mm x35 SE(L) 7/21/11 11:20



**Fabrication Issues** 

#### Metal running over 5 to 12 µm steps



#### **Removing substrates to prevent parallel thermal transport**





# **Electrical Conductivity Measurements**



 $\bigcirc$ 

Most measured variations in  $\sigma$  related to non-uniformity of material



# Seebeck coefficient measurements







 $\Delta T$  between two thermometers (K)





## **Scanning Thermal Microscopy**



Electrically isolated Au spot: isothermal with resistor





P. S. Dobson, et al., Rev. Sci. Inst. 76, 054901 (2006)



## **Thermal AFM Measurements 8557**





# **Micropelt MPG-D751 TEG Modules**





#### **Power Density Estimates**



NB Heat sinking and impedance matching key for maximum power



- BiTe / SbTe nanostructures for thermoelectrics
- $\bigcirc$
- Si/SiGe micro-thermoelectric generators
- ) Thermal & electrical modelling (transport to bulk systems)
  - Maximum power point tracking for thermoelectrics
- $\bigcirc$
- Thermoelectric (module) test (micro and macro: 270 to 800 °C)



National Physical Laboratory



European Thermodynamics Limited



**Doosan Babcock** 



## **1D Nanowires**

#### **Lateral Nanowires**



**Vertical Nanowires** 

10 nm wide 500 nm tall Si nanowire





Co-ordinated Action for EC ICT FET Proactive Initiative "Towards Zero Power ICT"

Network: energy harvesting & energy efficient ICT for autonomous ICT projects

Partners: Luca Gammaitoni, University of Perugia, Italy Giorgos Fagas, Tyndall Institute, Ireland Gabriel Abadal Berini, UAB, Barcelona, Spain Douglas Paul, University of Glasgow, U.K.

http://www.zero-power.eu/



EC ICT FET Project No. 270005





Si/SiGe heterostructures for engineered electron & phonon transport towards enhanced thermoelectrics



- Impedance matching, maximum power point tracking and heat sinking are key for thermoelectrics
- Powers of 10 mW/cm<sup>2</sup> from ΔT = 5 to 10 °C feasible in theory with Si-based technology practical powers will be lower



http://www.greensilicon.eu/GREENSilicon/index.html

Douglas.Paul@glasgow.ac.uk http://www.jwnc.gla.ac.uk/ Tel:- +44 141 330 5219



# EC ZEROPOWER Energy Harvesting Industrial Workshop

i march

100

(\$\$\$2.001



# 3<sup>rd</sup> and 4<sup>th</sup> July 2012 University of Glasgow

http://www.zero-power.eu/