

Power conditioning electronics and energy storage for MEMS/NEMS energy harvesters: Technical challenges

bernard.stark@bristol.ac.uk

Acknowledging:

Steve Burrow, Neville McNeill, Gyorgy Szarka, Plamen Proynov

Electrical Energy Management Research Group www.bristol.ac.uk/eeng/em

Content

Conceptual challenges at low input power:

- Control of power flow
- Synthesis of specific input impedances
- Handling power variability
- Use of commercially available circuits

Some specifics:

- Break-even point between active and passive
- Power stage (technology and power losses)
- Gate driving, control etc (technology & power losses)
- Start-up (technology)

Synthesis of input impedances

University of

IO

Power and start-up voltage ranges

Reported in:

Degrenne et al., "Self-starting DC:DC boost converter for low-power and low-voltage microbial electric generators." Energy Conversion Congress and Exposition (ECCE) 2011

str	Seiko and LT uggle at 'start	-UD ESTING DC:DC CONV	ERTERS COMPARISON		
Circuit	tage' and 100 µW Description				
$\overline{}$	art-up voltage	Power range	Vout	MPPT	Peak efficiency
Linear technologies LTC310 (1:20) [16]	100mV	100µW to 100mW	2.35V to 5V	no	0.6
Enocean ECT310 [18]	20mV	$100 \mu W$ to $100 m W$	3V to 5V	no	0.3
Seiko S-882Z [19]	300mV	? to 150µW	1.8V to 2.4V	no	0.2
Markus [14]	70n	200µ to 16mW	2V to 5V	no	0.7
Qiu [20]	500mV	5µW to 10mW	0V to 5V	yes	0.7
Ramadass [11]	35mV	10µW to ?	1.8V	yes	0.58
Uses a 'kinetic' switch! Requires many tens of mA to start up LTC3588 (Piezo) & 3388 (Buck)					

[11] Ramadass & Chandrakasan, "A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage," IEEE Journal of Solid-State Circuits, 2010.
[20] Qiu et al., "5µW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm", IEEE International Solid-State Circuits Conference, 2011.

Break-even point between passive and active (discrete example)

Example topology: Synchronous boost rectifier

- Passive diodes → Schottky diodes → "Active diodes"
- Boost converter DC/DC \rightarrow Synchronous \rightarrow AC/DC

Typical losses in power stage

Gate driving etc.

New circuits required with minimal start-up leakage

- Supply capacitor voltage rises gradually
- Control circuits enter faulty states where they draw a lot of current without turning on

- Power-on-reset circuits work for power rail slew-rates of V/ms but not for V/s or slower.
- Use 'isolator' circuits, e.g. Torex voltage detectors (>1 μA)

